30,109 research outputs found

    Anatomy of molecular structures in 20^{20}Ne

    Full text link
    We present a beyond mean-field study of clusters and molecular structures in low-spin states of 20^{20}Ne with a multireference relativistic energy density functional, where the dynamical correlation effects of symmetry restoration and quadrupole-octupole shapes fluctuation are taken into account with projections on parity, particle number and angular momentum in the framework of the generator coordinate method. Both the energy spectrum and the electric multipole transition strengths for low-lying parity-doublet bands are better reproduced after taking into account the dynamical octupole vibration effect. Consistent with the finding in previous studies, a rotation-induced dissolution of the α+16\alpha+^{16}O molecular structure in 20^{20}Ne is predicted.Comment: 6 pages with 6 figures, version to be published in Phys. Lett.

    Exact O(g^2 alpha_s) top decay width from general massive two-loop integrals

    Full text link
    We calculate the b-dependent self-energy of the top quark at O(g^2 \alpha_s) by using a general massive two-loop algorithm proposed in a previous article. From this we derive by unitarity the O(\alpha_s) radiative corrections to the decay width of the top quark, where all effects associated with the bb quark mass are included without resorting to a mass expansion. Our results agree with the analytical results available for the O(\alpha_s) correction to the top quark width

    Heavy-to-light scalar form factors from Muskhelishvili-Omn\`es dispersion relations

    Full text link
    By solving the Muskhelishvili-Omn\`es integral equations, the scalar form factors of the semileptonic heavy meson decays D→πℓˉνℓD\to\pi \bar \ell \nu_\ell, D→KˉℓˉνℓD\to \bar{K} \bar \ell \nu_\ell, Bˉ→πℓνˉℓ\bar{B}\to \pi \ell \bar\nu_\ell and Bˉs→Kℓνˉℓ\bar{B}_s\to K \ell \bar\nu_\ell are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q2=0q^2=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q2=0q^2=0, we obtain ∣Vcd∣=0.244±0.022|V_{cd}|=0.244\pm 0.022, ∣Vcs∣=0.945±0.041|V_{cs}|=0.945\pm 0.041 and ∣Vub∣=(4.3±0.7)×10−3|V_{ub}|=(4.3\pm 0.7)\times10^{-3} for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q2=0q^2=0: ∣f+D→η(0)∣=0.01±0.05|f_+^{D\to\eta}(0)|=0.01\pm 0.05, ∣f+Ds→K(0)∣=0.50±0.08|f_+^{D_s\to K}(0)|=0.50 \pm 0.08, ∣f+Ds→η(0)∣=0.73±0.03|f_+^{D_s\to\eta}(0)|=0.73\pm 0.03 and ∣f+Bˉ→η(0)∣=0.82±0.08|f_+^{\bar{B}\to\eta}(0)|=0.82 \pm 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q2−q^2-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.Comment: includes further discussions and references; matches the accepted versio

    Partitioning space for range queries

    Get PDF
    It is shown that, given a set S of n points in R3, one can always find three planes that form an eight-partition of S, that is, a partition where at most n/8 points of S lie in each of the eight open regions. This theorem is used to define a data structure, called an octant tree, for representing any point set in R3. An octant tree for n points occupies O(n) space and can be constructed in polynomial time. With this data structure and its refinements, efficient solutions to various range query problems in 2 and 3 dimensions can be obtained, including (1) half-space queries: find all points of S that lie to one side of any given plane; (2) polyhedron queries: find all points that lie inside (outside) any given polyhedron; and (3) circular queries in R2: for a planar set S, find all points that lie inside (outside) any given circle. The retrieval time for all these queries is T(n)=O(na + m) where a= 0.8988 (or 0.8471 in case (3)) and m is the size of the output. This performance is the best currently known for linear-space data structures which can be deterministically constructed in polynomial time

    Transient response under ultrafast interband excitation of an intrinsic graphene

    Full text link
    The transient evolution of carriers in an intrinsic graphene under ultrafast excitation, which is caused by the collisionless interband transitions, is studied theoretically. The energy relaxation due to the quasielastic acoustic phonon scattering and the interband generation-recombination transitions due to thermal radiation are analyzed. The distributions of carriers are obtained for the limiting cases when carrier-carrier scattering is negligible and when the intercarrier scattering imposes the quasiequilibrium distribution. The transient optical response (differential reflectivity and transmissivity) on a probe radiation and transient photoconductivity (response on a weak dc field) appears to be strongly dependent on the relaxation and recombination dynamics of carriers.Comment: 9 pages, 8 figure

    Prewetting transition on a weakly disordered substrate : evidence for a creeping film dynamics

    Full text link
    We present the first microscopic images of the prewetting transition of a liquid film on a solid surface. Pictures of the local coverage map of a helium film on a cesium metal surface are taken while the temperature is raised through the transition. The film edge is found to advance at constant temperature by successive avalanches in a creep motion with a macroscopic correlation length. The creep velocity varies strongly in a narrow temperature range. The retreat motion is obtained only at much lower temperature, conforming to the strong hysteresis observed for prewetting transition on a disordered surface. Prewetting transition on such disordered surfaces appears to give rise to dynamical phenomena similar to what is observed for domain wall motions in 2D magnets.Comment: 7 pages, 3 figures, to be published in Euro.Phys.Let

    Hole Spin Coherence in a Ge/Si Heterostructure Nanowire

    Get PDF
    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2∗∼0.18 μsT_2^* \sim 0.18~\mathrm{\mu s} exceeds corresponding measurements in III-V semiconductors by more than an order of magnitude, as expected for predominately nuclear-spin-free materials. Dephasing is observed to be exponential in time, indicating the presence of a broadband noise source, rather than Gaussian, previously seen in systems with nuclear-spin-dominated dephasing.Comment: 15 pages, 4 figure
    • …
    corecore